
CENG3430 Rapid Prototyping of Digital Systems

Lecture 08:

Use of Signals and Variables

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Revisit: Signal (<=) and Variable (:=) Assignments

• Use of Signals and Variables

– Outside Process: Concurrent Statement

– Inside Process: Sequential Statement

• Combinational Process

• Sequential Process

CENG3430 Lec08: Use of Signals and Variables 2

Revisit: Signal Assignment (<=)

• Signal Assignment (<=)

– Global to the entity

– Concurrent execution

– Do not be confused with the operator <= (equal or smaller)

• For example: A1 <= B1 or C1

– A1 must be declared outside a process.

– A1 represents an internal wire or an input/output pin in port.

CENG3430 Lec08: Use of Signals and Variables 3

C1

B1
A1

Revisit: Variable Assignment (:=)

• Variable Assignment (:=)

– Local to a process

– Sequential execution

– Constant/signal/variable initialization also uses “:=”

• For example: A2 := B2 or C2

– A2 must be declared inside a process.

– A2 must be a variable.

CENG3430 Lec08: Use of Signals and Variables 4

C2

B2
A2

CENG3430 Lec08: Use of Signals and Variables 5

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering
• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Sequential Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Sequential Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

CENG3430 Lec08: Use of Signals and Variables 6

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering
• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Sequential Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Sequential Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

Outside Process: Concurrent Statement

• Signal Assignments outside a Process

– All the statements outside processes are “concurrent”.

• All concurrent statements can be interchanged freely.

• Each statement will be executed once when any signal in it changes.

– Signals can be assigned with multiple values if “resolved
logic” (i.e., std_logic rather than std_ulogic) is allowed.

architecture test_arch of test is

out1 <= in1 and in2; -- concurrent statement

out2 <= in1 or in2; -- concurrent statement

out2 <= in2; -- multi-value assignment

end test_arch;

• Variable Assignments outside a Process

– Variables can only live inside processes!

CENG3430 Lec08: Use of Signals and Variables 7

Ex:

CENG3430 Lec08: Use of Signals and Variables 8

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering
• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Sequential Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Sequential Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

Inside Process: Sequential Statement

• Statements inside process are executed sequentially.

– The process will be executed once when one or more

signals in the sensitivity list changes.
process(in1, in2) -- sensitivity list

variable v1, v2: std_logic;

begin

s1 <= in1 and in2;

s1 <= in1 or in2;

v1 := in1 and in2;

v1 := in1 or in2;

end process

– Signals Assignments (<=) inside a Process:

Only the last assignment for a particular signal takes effect.

– Variables Assignments (:=) inside a Process:

All assignments take effect immediately and sequentially.

• A process can be: “combinational” or “sequential”.
CENG3430 Lec08: Use of Signals and Variables 9

Ex:

CENG3430 Lec08: Use of Signals and Variables 10

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering
• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Sequential Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Sequential Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

1) Combinational Process

• Combinational Process

– NO clock triggering condition can be found inside.

• Clock Triggering Condition: if (clk='1' and clk'event),

(wait until clk='1'), etc.

– Each “<=” is a combinational logic.

– All involved inputs should be in the sensitivity list.

• Otherwise the results will be unpredictable.

combinational_process: process(in1, in2)

begin

out3 <= in1 xor in2;

out3 <= ’1’;

end process;

CENG3430 Lec08: Use of Signals and Variables 11

Ex:

Class Exercise 8.1
1 signal S1, S2: bit;

2 signal S_OUT: bit_vector(1 to 8);

3 process (S1, S2)

4 variable V1, V2: bit;

5 begin

6 V1 := ’1’;

7 V2 := ’1’;

8 S1 <= ’1’;

9 S2 <= ’1’;

10 S_OUT(1) <= V1;

11 S_OUT(2) <= V2;

12 S_OUT(3) <= S1;

13 S_OUT(4) <= S2;

14 V1 := ’0’;

15 V2 := ’0’;

16 S2 <= ’0’;

17 S_OUT(5) <= V1;

18 S_OUT(6) <= V2;

19 S_OUT(7) <= S1;

20 S_OUT(8) <= S2;

21 end process;

CENG3430 Lec08: Use of Signals and Variables 12

Student ID:

Name:

Date:

• Which line(s) will NOT

take effect?

Answer: ______________

• When will the process be

executed?

Answer: ______________

• What are the values of
S_OUT after execution?

Answer:

S_OUT(1):

S_OUT(2):

S_OUT(3):

S_OUT(4):

S_OUT(5):

S_OUT(6):

S_OUT(7):

S_OUT(8):

CENG3430 Lec08: Use of Signals and Variables 14

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering
• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Sequential Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Sequential Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

2) Sequential Process

• Sequential Process (a.k.a. Clocked Process)

– A clock edge expression can be found inside:

• “if” statement:
clocked_process: process(sensitivity list)

begin

… -- same as combinational process

if (clk='1' and clk'event) then

out1 <= in1 and in2;

end if;

… -- same as combinational process

end process;

• “wait until” statement:
clocked_process: process -- no sensitivity list

begin

wait until clk='1';

out1 <= in1 and in2;

end process;

CENG3430 Lec08: Use of Signals and Variables 15

1) Each “<=” is a flip-flop.

2) The assignment takes

effect on next clock edge.

1) Each “<=” is a flip-flop.

2) The assignment takes

effect on next clock edge.

Class Exercise 8.2

CENG3430 Lec08: Use of Signals and Variables 16

Student ID:

Name:

Date:

• Find the signal results after clock edges t1 ~ t4:

process

signal s1: integer:=1;

signal s2: integer:=2;

signal s3: integer:=3;

begin

wait until rising_edge(clk);

s1 <= s2 + s3;

s2 <= s1;

s3 <= s2;

sum <= s1 + s2 + s3;

end process

end

t1 t2 t3 t4

s1

s2

s3

sum

t1 t2 t3 t4

Class Exercise 8.3

CENG3430 Lec08: Use of Signals and Variables 18

Student ID:

Name:

Date:

• Find the signal results after clock edges t1 ~ t4:

process

variable v1: integer:=1;

variable v2: integer:=2;

variable v3: integer:=3;

begin

wait until rising_edge(clk);

v1 := v2 + v3;

v2 := v1;

v3 := v2;

sum <= v1 + v2 + v3;

end process

end

t1 t2 t3 t4

v1

v2

v3

sum

t1 t2 t3 t4

Do Variables Have Memory?

• Yes. After a process is called, the state of a variable
will be kept for being used again next time.

CENG3430 Lec08: Use of Signals and Variables 20

library IEEE;

use IEEE.std_logic_1164.all;

entity test is port (a, reset_v1: in std_logic;

b, c: out std_logic); end test;

architecture test_arch of test is

begin

label_proc1: process (a, reset_v1)

variable v1 : std_logic;

begin

if reset_v1 ='1' then

v1:= not a;

end if;

b <= a;

c <= v1;

end process label_proc1;

end test_arch;

v1 stays at two different levels

depending on previous result.

CENG3430 Lec08: Use of Signals and Variables 21

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering
• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Sequential Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Sequential Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Overview: Use of Signals and Variables

Synchronous & Asynchronous Inputs

• Besides of the clock signal (CLK), other signals in a

clocked process can be classified into two types:

1) Synchronous Inputs (e.g., D input of flip-flops)

• Inputs that should be checked only at the next clock edge.

• NO need to put synchronous input signals in the sensitivity list.

2) Asynchronous Inputs (e.g., RESET input of flip-flops)

• Inputs that should be checked either at the next clock edge or

when any asynchronous input in the sensitivity list changes.

• Asynchronous inputs NEVER exist in wait-until clocked processes.

process(CLK, RESET) -- no need to put D, why?
begin
if (RESET = '1') then
Q <= '0'; -- Reset Q immediately

elsif CLK = '1' and CLK'event then
Q <= D; -- Q follows input D

end if;
end process;

CENG3430 Lec08: Use of Signals and Variables 22

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

Class Exercise 8.4

…

port(clock,reset: in std_logic;

t_light: out std_logic_vector (2 downto 0));

…

type traffic_state_type is (s0, s1,s2,s3);

signal t_state: traffic_state_type; -- internal signal

CENG3430 Lec08: Use of Signals and Variables 23

Student ID:

Name:

Date:

• What are processes p1 and p2 (combinational or sequential)?

• Which signals are sync., async., or combinational inputs?

p1: process(t_state)
begin

case (t_state) is
when s0 => t_light <= "100";
when s1 => t_light <= "110";

when s2 => t_light <= "001";
when s3 => t_light <= "010";

end case;

end process;

p2: process
begin

wait until clock='1';
if reset = '1' then

t_state <= s0;

else
case t_state is
when s0 => t_state <= s1;

when s1 => t_state <= s2;
when s2 => t_state <= s3;
when s3 => t_state <= s0;

end case;
end if;

end process;

Class Exercise 8.5

CENG3430 Lec08: Use of Signals and Variables 25

Student ID:

Name:

Date:

• Based on Class Exercise 7.4, rewrite process p2 using

asynchronous reset.

sync_p2: process

begin

wait until clock='1';

if reset = '1' then

t_state <= s0;

else

case t_state is

when s0 => t_state <= s1;

when s1 => t_state <= s2;

when s2 => t_state <= s3;

when s3 => t_state <= s0;

end case;

end if;

end process;

async_p2: process

begin

end process;

Recall: “wait until” vs. “if”

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Rule: Only use “if” for asynchronous process:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec08: Use of Signals and Variables 27

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

CENG3430 Lec08: Use of Signals and Variables 28

• Outside Process
– Concurrent Statements

• Inside Process
– Sequential Statements

1) Combinational Process:
NO CLK triggering
• “<=” is a combinational logic

• All involved inputs should be

in the sensitivity list

2) Sequential Process:
Has CLK triggering

• “<=” is a flip-flop

• Synchronous Inputs: should

NOT be in the sensitivity list

• Asynchronous Inputs:

should be in sensitivity list

architecture body

Outside Process

Combinational Process

NO Clock Triggering

Sequential Process

Clock Triggering Exists

1) Synchronous Inputs
NOT in sensitivity list

2) Asynchronous Inputs
IN sensitivity list

if/wait until CLK;

process(sensitivity list)

Summary: Use of Signals and Variables

Summary: Inside Process

• Signals Assignments (<=) inside a Process

– Only the last assignment for a particular signal takes effect.

– Combinational Process: No clock (CLK) triggering

• Each “<=” is a combinational logic.

• All involved inputs should be in the sensitivity list.

– Sequential Process: Has clock (CLK) triggering

• Signal assignments before or outside the clock edge detection:

– As the same as combinational process (be careful!).

• Signal assignments after or inside the clock edge detection:

– Each “<=” can be treated as a flip-flop: The signal assignment

will take effect at the next clock edge.

– Synchronous inputs should NOT be in the sensitivity list.

– Asynchronous inputs should be in the sensitivity list.

• Variables Assignments (:=) inside a Process

– All assignments take effect immediately and sequentially.

CENG3430 Lec08: Use of Signals and Variables 29

Summary: Multiple Assignments

• Signals

– Outside Process

• Signals can be assigned with multiple values (i.e., “multi-

value” or “multi-driven”) only if “resolved logic” is allowed.

• If not allowed? Avoid assigning a signal from multiple

processes (or multiple concurrent statement).

– Inside Process

• Only the last assignment for that signal will take effect.

• Variables

– Outside Process

• Variables can only live inside processes!

– Inside Process

• ALL assignments take effect immediately and sequentially.
CENG3430 Lec08: Use of Signals and Variables 30

